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Abstract. We consider the standard model on a non-commutative space and expand the action in the non-
commutativity parameter θµν . No new particles are introduced; the structure group is SU(3)×SU(2)×U(1).
We derive the leading order action. At zeroth order the action coincides with the ordinary standard model.
At leading order in θµν we find new vertices which are absent in the standard model on commutative
space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and
many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative
QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM
to the order considered.

1 Introduction

A method for implementing non-Abelian SU(N) Yang–
Mills theories on non-commutative space-time has recently
been proposed [1–4]. Previously only U(N) gauge theories
were under control, and it was thus only possible to con-
sider extensions of the standard model. Recently there has
been a lot of activity on model building. The aim of this
paper is to apply the method proposed in [1–4] to the
full standard model of particle physics [5]. We present a
minimal non-commutative standard model with structure
group SU(3)C×SU(2)L×U(1)Y and with the same fields
and the same number of coupling parameters as in the
standard model.

On a non-commutative space-time, space-time coordi-
nates do not commute. A particularly simple example is
that of a canonical structure

[xµ �, xν ] ≡ xµ � xν − xν � xµ = iθµν , (1)

with a constant antisymmetric matrix θµν . We may think
of θµν as a background field relative to which directions in
space-time are distinguished. We use the symbol � in (1)
to denote the product of the non-commutative structure.
We shall focus on the case where this structure is given by
a star product (see below), because then the discussion of
a classical (commutative) limit is particularly transparent.

Obviously, the physics on such a space-time is very dif-
ferent from that on commutative space-time. For example,
Lorentz symmetry is explicitly violated. There are several
motivations to impose such a relation, which is reminis-
cent of the non-commutative relation imposed in quantum
mechanics between coordinates and momenta. One may
speculate that space-time becomes non-commutative at
very short distances when quantum gravitation becomes

relevant. We would like to point out, however, that the
non-commutativity scale could be much lower. An exam-
ple of a system where space-time coordinates do not com-
mute is that of a particle in a strong magnetic field; see
e.g. [6]. Applying similar concepts to particle physics thus
does not seem too unnatural. Another motivation comes
from string theory where non-commutative gauge theory
appears as a certain limit in the presence of a background
field B [7]. Moreover, it is very satisfactory to understand
how symmetries can arise in a low energy theory like the
standard model from a larger theory which is less symmet-
ric. Indeed the non-commutative version of the standard
model is Lorentz violating, but the Seiberg–Witten map
allows one to understand why Lorentz symmetry is an al-
most exact symmetry of Nature: the zeroth order of the
theory is the Lorentz invariant standard model.

If one is willing to apply the mechanism proposed in
[1–4,8] to the standard model, two problems have to be
addressed. First, it has been claimed that in non-com-
mutative quantum electrodynamics charges are quantized
and can only take the values ±1 and zero [9]. This would
indeed be a problem in view of the range of hypercharges
in the standard model; see Table 1. We will argue that this
is really a problem concerning the number of degrees of
freedom and will show how it can be overcome with the
help of the Seiberg–Witten map. In fact the solution to
the problem is closely related to the problem of arbitrary
structure groups that we already mentioned. Secondly, we
have to deal with tensor products of gauge groups. A no-
go theorem concerning this issue has been proposed [10],
but we will show that this can again be dealt with us-
ing the methods proposed in [1–4,8]. We incorporate all
gauge fields into one “master field” thereby insuring gauge
invariance of the theory. There remains some ambiguity in
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the choice of kinetic terms for the gauge potentials and for
the Higgs that we shall discuss.

We expand the non-commutative action in terms of the
parameter θµν . This expansion corresponds to an expan-
sion in the transferred momentum. It gives a low energy
effective action valid for small momentum transfer and
it can be compared to the low energy effective theory of
quantum chromodynamics known as chiral perturbation
theory (see e.g. [11] for a review on chiral perturbation
theory). At zeroth order in θµν we recover the ordinary
standard model.

A priori there is no reason to expect that θµν is con-
stant. There is no fundamental theoretical obstacle to for-
mulate the theory also for non-constant θµν(x), but we
shall concentrate on the constant case in the following for
simplicity of presentation. Up to terms involving deriva-
tives of θµν(x), our leading order results are also valid for
a slowly varying space-time dependent θµν(x). Further-
more, we should note that there are unresolved problems
with unitarity in field theories with non-trivial temporal
non-commutativity, so one has to treat that case with care.

One of the main motivations for applying the tech-
niques of [1–4,8] to the full standard model is to verify that
the theory is still consistent with the Higgs mechanism
[12]. The Higgs mechanism has previously been discussed
in the context of non-commutative Abelian gauge theory
[13]. We find that as expected the Higgs mechanism can
be applied in the non-commutative version of the standard
model. The photon remains massless to all orders in the
deformation parameter. In a non-commutative setting the
photon can couple to neutral particles via a �-commutator.
However, in the minimal version of the NCSM that we
present in the main part of this paper we, e.g., do not find
a vertex with two Higgs bosons and one electromagnetic
photon to any order in the deformation parameter.

2 Gauge theory
on non-commutative space-time

The subject has a long history. The idea that coordinates
may not commute can be traced back to Heisenberg. For
an early reference on field theory on a non-commutative
space; see [14]. The mathematical development of non-
commutative geometry also has a long history [15]. An
interpretation of the electroweak sector in terms of non-
commutative geometry has been proposed by Connes and
Lott [16]. This is not the topic of the present work. Nei-
ther do we consider deformations of the structure group
and corresponding quantum gauge theories; see, e.g., [17].
Our aim is to adapt the standard model to the situation
where space-time is non-commutative. We are in particu-
lar interested in field theory aspects of the type of non-
commutative gauge theory that has been a recent focus
of interest in string and M(atrix) theory [7]. For a review
and more references see, e.g., [18].

We would like to start by briefly reviewing an intu-
itive approach to the construction of gauge theories over a
given non-commutative structure [1]. As such we consider

a non-commutative associative algebra A whose elements
we shall call “functions on non-commutative space-time”
in the spirit of the Gel’fand–Naimark theorem. For the
purposes of this article we shall also require that there is
an invariant integral (trace), a well-defined classical limit
and that a perturbative treatment of the non-commuta-
tivity is possible. This is the case for the canonical struc-
ture (1), which can be extended to the Moyal–Weyl star
product defined by a formal power series expansion of

(f � g)(x) = exp
(

i
2
θµν

∂

∂xµ
∂

∂yν

)
f(x)g(y)

∣∣∣∣
y→x

, (2)

together with the ordinary integral
∫

dnxf(x). The latter
has the property∫

dnx(f�g)(x) =
∫

dnx(g�f)(x) =
∫

dnxf(x)g(x), (3)

as can be seen by partial integration. Here f(x), g(x)
are ordinary functions on Rn and the expansion in the
star product can be seen intuitively as an expansion of
the product in its non-commutativity. One should note
that Rn is only an auxiliary space needed to define the
star product. It should not be confused with the “non-
commutative space-time” itself, which in contrast to Rn

does not have “points”. In the classical limit θµν → 0 we
recover ordinary commutative space-time.

2.1 Gauge fields on non-commutative space-time

The construction of a gauge theory on a given non-
commutative space can be based on a few basic ideas: the
concept of covariant coordinates/functions, the require-
ment of locality, and gauge equivalence and consistency
conditions.

Non-commutative gauge transformations

Let us consider an infinitesimal non-commutative local
gauge transformation δ̂ of a fundamental matter field that
carries a representation ρΨ

δ̂Ψ̂ = iρΨ (Λ̂) � Ψ̂ . (4)

In the Abelian case the representation is fixed by the hy-
percharge. In the non-Abelian case Ψ̂ is a vector, ρΨ (Λ̂)
a matrix whose entries are functions on non-commutative
space-time and � includes matrix multiplication, i.e.,
[ρΨ (Λ̂) � Ψ̂ ]a ≡∑b[ρΨ (Λ̂)]ab � Ψ̂b.

The product of a field and a coordinate, Ψ̂ � xµ, trans-
forms just like Ψ̂ , but the opposite product, xµ � Ψ̂ , is not
a covariant object because the gauge parameter does not
commute with xµ. In complete analogy to the covariant
derivatives of ordinary gauge theory we thus need to in-
troduce covariant coordinates Xµ = xµ + θµνÂν , where
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Âν is a non-commutative analog of the gauge potential
with the following transformation property1:

δ̂Âµ = ∂µΛ̂+ i[Λ̂ �, Âµ]. (5)

From the covariant coordinates one can construct fur-
ther covariant objects including the non-commutative field
strength

F̂µν = ∂µÂν − ∂νÂµ − i[Âµ �, Âν ], δ̂F̂µν = i[Λ̂ �, F̂µν ],
(6)

related to the commutator of covariant coordinates, and
the covariant derivative

D̂µΨ̂ = ∂µΨ̂ − iρΨ (Âµ) � Ψ̂ , (7)

related to the covariant expression ρΨ (Xµ) � Ψ̂ − Ψ̂ � xµ.
In the following we shall often omit the symbol ρΨ ,

when its presence is obvious.

Locality, classical limit and Seiberg–Witten maps

A star product of ordinary functions f , g can be seen as
a tower built upon its classical limit, which is determined
by a Poisson tensor θµν(x),

f � g = f · g +
i
2
θµν(x)∂µf · ∂νg + O(θ2), (8)

with higher order terms chosen in such a way as to yield an
associative product. The star product is a local function of
f , g, meaning that it is a formal series that at each order
in θ depends on f , g and a finite number of derivatives of
f and g.

The non-commutative fields Â, Ψ̂ and non-commu-
tative gauge parameter Λ̂ can be expressed in a similar
fashion as towers built upon the corresponding ordinary
fields A, Ψ and ordinary gauge parameter Λ. There are
so-called Seiberg–Witten maps [7] that express the non-
commutative fields and parameters as local functions of
the ordinary fields and parameters,

Âξ[A] = Aξ +
1
4
θµν{Aν , ∂µAξ}

+
1
4
θµν{Fµξ, Aν} + O(θ2), (9)

Ψ̂ [Ψ,A] = Ψ +
1
2
θµνρΨ (Aν)∂µΨ (10)

+
i
8
θµν [ρΨ (Aµ), ρΨ (Aν)]Ψ + O(θ2),

Λ̂[Λ,A] = Λ+
1
4
θµν{Aν , ∂µΛ} + O(θ2), (11)

where Fµν = ∂µAν −∂νAµ− i[Aµ, Aν ] is the ordinary field
strength. We shall henceforth omit the explicit depen-
dence of the non-commutative fields and parameters on

1 Here and in the following we use θµν to lower indices, yield-
ing expressions that are more convenient to work with. We
should note that this is in general only possible in the case of
constant θµν

their ordinary counterparts with the understanding that
the hat̂denotes non-commutative quantities that can be
expanded as local functions of their classical counterparts
via Seiberg–Witten maps.

Gauge equivalence and consistency condition

The Seiberg–Witten maps have the remarkable property
that ordinary gauge transformations δAµ = ∂µΛ+i[Λ,Aµ]
and δΨ = iΛ · Ψ induce non-commutative gauge transfor-
mations (4), (5) of the fields Â, Ψ̂ with the gauge param-
eter Λ̂ as given above:

δÂµ = δ̂Âµ, δΨ̂ = δ̂Ψ̂ . (12)

For consistency we have to require that any pair of non-
commutative gauge parameters Λ̂, Σ̂ satisfy

[Λ̂ �, Σ̂] + iδΛΣ̂ − iδΣΛ̂ = [̂Λ,Σ]. (13)

Since this consistency condition involves solely the gauge
parameters it is convenient to base the construction of
the Seiberg–Witten map (11) on it. In a second step the
remaining Seiberg–Witten maps (9) and (10) can be com-
puted from the gauge equivalence condition (12). The
gauge equivalence and consistency conditions do not
uniquely determine Seiberg–Witten maps. To the order
considered here we have the freedom of classical field re-
definitions and non-commutative gauge transformations.
We have used the latter freedom to choose Seiberg–Witten
maps with hermitian Λ̂ and Âµ.

The freedom in the Seiberg–Witten map is essential
for the renormalization of non-commutative gauge theory
[8]. The constants that parametrize the freedom in the
Seiberg–Witten map become free running coupling con-
stant which are determined by the unknown fundamental
theory which is responsible for the non-commutative na-
ture of space-time. The field redefinition freedom is also
important in the context of tensor products of gauge
groups.

2.2 Non-Abelian gauge groups

The commutator

[Λ̂ �, Λ̂′] =
1
2
{Λa(x) �, Λ′

b(x)}[T a, T b]

+
1
2
[Λa(x) �, Λ′

b(x)]{T a, T b} (14)

of two Lie algebra-valued non-commutative gauge param-
eters Λ̂ = Λa(x)T a and Λ̂′ = Λ′

a(x)T
a does not close in

the Lie algebra. It is in general enveloping algebra-valued
(it contains products of generators), because the coeffi-
cient [Λa(x) �, Λ′

b(x)] of the anti-commutator of generators
{T a, T b} is in general non-zero in the non-commutative
case [1,2]. An important exception is U(N) in the fun-
damental representation. If we try, however, to construct
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non-commutative SU(N) with Lie algebra-valued gauge
parameters, we immediately face the problem that a trace-
lessness condition is incompatible with (14). We thus have
to consider enveloping algebra-valued non-commutative
gauge parameters

Λ̂ = Λ0a(x)T
a+Λ1ab(x) : T aT b : +Λ2abc(x) : T aT bT c : + . . .

(15)
and fields. (The symbol : : denotes some appropriate or-
dering of the Lie algebra generators.) A priori we now
face the problem that we have an infinite number of pa-
rameters Λ0a(x), Λ

1
ab(x), Λ

2
abc(x), . . . , but these are not

independent. They can in fact all be expressed in terms
of the right number of classical parameters and fields via
the Seiberg–Witten maps. Similar observations and con-
clusions hold for the non-commutative non-Abelian gauge
fields.

2.3 Charge in non-commutative QED

In non-commutative QED one faces the problem that the
theory can apparently accommodate only charges ±q or
zero for one fixed q [9]. We shall briefly review the problem
below and will argue that there is no such restriction in the
θ-expanded approach based on Seiberg–Witten maps. The
problem (and its solution) is in fact related to the prob-
lem with arbitrary gauge groups that we discussed above:
The commutation of Lie algebra-valued non-commutative
gauge parameters closes only in the fundamental repre-
sentation of U(1).

The only couplings of the non-commutative gauge bo-
son Âµ to a matter field Ψ̂ compatible with the non-
commutative gauge transformation (5) in addition to (7)
are

D̂−
µ Ψ̂

− = ∂µΨ̂
− + iΨ̂− � Âµ, D̂0µΨ̂

0 = ∂µΨ̂
0,

D̂0
′
µ Ψ̂

0′
= ∂µΨ̂

0′ − i[Âµ �, Ψ̂0
′
], (16)

with δ̂Ψ̂− = −iΨ̂− � Λ̂, δ̂Ψ̂0 = 0, and δ̂Ψ̂0
′
= i[Λ̂ �, Ψ̂0

′
],

respectively. (The latter possibility is interesting since it
shows how a neutral particle can couple to the (hyper)
photon in a non-commutative setting [19].) At first sight,
it thus appears that only U(1) charges +1, −1, 0 are pos-
sible.

We should of course consider physical fields â
(n)
µ (x).

Let Q be the generator of U(1) (charge operator), e a
coupling constant and ψ(n) a field for a particle of charge
q(n). Then Aµ = eQaµ(x) and Âµ � ψ̂

(n) = eq(n)â
(n)
µ (x) �

ψ̂(n), since the Seiberg–Witten map Âµ depends explicitly
on Q. In ordinary QED there is only one photon, i.e., there
is no need for a label (n) on aµ. Here, however, we have a
separate â(n)µ for every charge q(n) in the theory. The field
strength

f̂ (n)µν = ∂µâ
(n)
ν − ∂ν â

(n)
µ + ieq(n)[â(n)µ �, â(n)ν ] (17)

and covariant derivative

D̂µψ̂
(n) = ∂µψ̂

(n) − ieq(n)â(n)µ ψ̂(n) (18)

transform covariantly under

δ̂â(n)µ = ∂µλ̂
(n) + ieq(n)[λ̂(n) �, â(n)µ ],

δ̂ψ̂(n) = ieq(n)λ̂(n) � ψ̂(n). (19)

We see that the â(n)µ cannot be equal to each other because
of the non-zero �-commutator in the transformation of
â
(n)
µ . It is not possible to absorb q(n) in a redefinition of
â
(n)
µ .

We can have any charge now, but it appears that we
have too many degrees of freedom. This is not really the
case, however, since all â(n)µ are local functions of the cor-
rect number of classical gauge fields aµ via the Seiberg–
Witten map (9) that, when written in terms of the physical
fields, depends on q(n):

â
(n)
ξ = aξ +

eq(n)

4
θµν{aν , ∂µaξ}

+
eq(n)

4
θµν{fµξ, aν} + O(θ2). (20)

In the action for the non-commutative gauge fields we now
face a choice: From the non-commutative point of view it
appears to be natural to provide kinetic terms for all â(n)µ ,
even though these fields are not really independent. This
leads to a trace over the particles in the model and will be
discussed in AppendixC. In the main part of this paper
we will instead make a simpler choice for the trace that
leads to minimal deviations from the ordinary standard
model. That choice is more natural from the point of view
that the independent degrees of freedom are given by the
aµ. Gauge invariance alone is not enough to favor one of
the possible choices.

2.4 Non-commutative Yukawa couplings and Higgs

We can generalize (10) to the case of a field Φ that trans-
forms on the left and on the right under two arbitrary
gauge groups with corresponding gauge potentials Aµ, A′

µ.
We have Φ̂ ≡ Φ̂[Φ,A,A′], given by the following hybrid
Seiberg–Witten map:

Φ̂[Φ,A,A′] = Φ+
1
2
θµνAν

(
∂µΦ− i

2
(AµΦ− ΦA′

µ)
)

+
1
2
θµν

(
∂µΦ− i

2
(AµΦ− ΦA′

µ)
)
A′
ν + O(θ2). (21)

It transforms covariantly,

δΦ̂ = iΛ̂ � Φ̂− iΦ̂ � Λ̂′, (22)

under δΦ = iΛΦ − iΦΛ′, δAν = ∂νΛ + i[Λ,Aν ], δA′
ν =

∂νΛ
′ + i[Λ′, A′

ν ]. The covariant derivative for Φ̂ is

D̂µΦ̂ = ∂µΦ̂− iÂµ � Φ̂+ iΦ̂ � Â′
µ. (23)
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We need the hybrid Seiberg–Witten map to construct
gauge covariant Yukawa couplings. The classical (“com-
mutative”) Higgs Φ has U(1) charge Y = 1/2 and trans-
forms under SU(2) in the fundamental representation.
It has no color charge. Φ obviously commutes with the
classical U(1) and SU(3) gauge parameters. In the non-
commutative case this is not the case because both Φ and
the parameters are functions on space-time and thus do
not commute. It is still true that the non-commutative
Φ̂ has overall U(1) charge Y = 1/2 and no overall color
charge, but the precise representations on the left (affects
Aµ) and on the right (affects A′

µ) are inherited from the
fermions on the left and the right of the Higgs in the
Yukawa couplings.

3 The non-commutative standard model

The structure group of the standard model is GSM =
SU(3)C×SU(2)L×U(1)Y . There are several ways to deal
with this tensor product in the non-commutative case that
correspond to a freedom in the choice of Seiberg–Witten
map. The simplest, symmetric and most natural approach
is to take the classical tensor product and consider the
whole gauge potential Vµ of GSM as defined by

Vν = g′Aν(x)Y +g

3∑
a=1

Bνa(x)T aL +gS

8∑
b=1

Gνb(x)T bS (24)

and the commutative gauge parameter Λ by

Λ = g′α(x)Y + g

3∑
a=1

αLa (x)T
a
L + gS

8∑
b=1

αSb (x)T
b
S , (25)

where Y , T aL , T
b
S are the generators of u(1)Y , su(2)L and

su(3)C respectively. The non-commutative gauge param-
eter Λ̂ is then given via the Seiberg–Witten map by

Λ̂ = Λ+
1
4
θµν{Vν , ∂µΛ} + O(θ2). (26)

Note that this is not equal to a naive sum of non-commu-
tative gauge parameters corresponding to the three factors
in GSM. This is due to the nonlinearity of the Seiberg–
Witten maps and ultimately is a consequence of the non-
linear consistency condition (13). The non-commutative
fermion fields Ψ̂ (n) corresponding to particles labelled by
(n) is

Ψ̂ (n) = Ψ (n) +
1
2
θµνρ(n)(Vν)∂µΨ (n)

+
i
8
θµν [ρ(n)(Vµ), ρ(n)(Vν)]Ψ (n) + O(θ2). (27)

The Seiberg–Witten map for the non-commutative vector
potential V̂µ yields

V̂ξ = Vξ+
1
4
θµν{Vν , ∂µVξ}+

1
4
θµν{Fµξ, Vν}+O(θ2), (28)

Table 1. The standard model fields. The electric charge is
given by the Gell-Mann-Nishijima relation Q = (T3 + Y ). The
fields Bi with i ∈ {+, −, 3} denote the three electroweak
gauge bosons. The gluons Gi are in the octet representation
of SU(3)C

SU(3)C SU(2)L U(1)Y U(1)Q

eR 1 1 −1 −1

LL =

(
νL

eL

)
1 2 −1/2

(
0

−1

)

uR 3 1 2/3 2/3
dR 3 1 −1/3 −1/3

QL =

(
uL

dL

)
3 2 1/6

(
2/3

−1/3

)

Φ =

(
φ+

φ0

)
1 2 1/2

(
1
0

)

Bi 1 3 0 (±1, 0)
A 1 1 0 0
Ga 8 1 0 0

with the ordinary field strength Fµν ≡ ∂µV ν − ∂νV µ −
i[V µ, V ν ]. The non-commutative field strength is

F̂µν = ∂µV̂ν − ∂ν V̂µ − i[V̂µ ∗, V̂ν ]. (29)

We have the following particle spectrum; see Table 1:

Ψ
(i)
L =

(
L
(i)
L

Q
(i)
L

)
, Ψ

(i)
R =

 e
(i)
R

u
(i)
R

d
(i)
R

 , Φ =

(
φ+

φ0

)
, (30)

where (i) ∈ {1, 2, 3} is the generation index and φ+ and φ0
are the complex scalar fields of the scalar Higgs doublet.
The non-commutative Higgs field Φ̂ is given by the hybrid
Seiberg–Witten map (21),

Φ̂ = Φ+
1
2
θµνVν

(
∂µΦ− i

2
(VµΦ− ΦV ′

µ)
)

+
1
2
θµν

(
∂µΦ− i

2
(VµΦ− ΦV ′

µ)
)
V ′
ν + O(θ2) . (31)

The non-commutative standard model can now be
written in a very compact way:

SNCSM =
∫

d4x
3∑
i=1

Ψ̂
(i)

L � i /̂DΨ̂ (i)L +
∫

d4x
3∑
i=1

Ψ̂
(i)

R � i /̂DΨ̂ (i)R

−
∫

d4x
1

2g′ tr1F̂µν � F̂
µν−

∫
d4x

1
2g

tr2F̂µν � F̂µν

−
∫

d4x
1

2gS
tr3F̂µν � F̂µν

+
∫

d4x
(
ρ0(D̂µΦ̂)† � ρ0(D̂µΦ̂) − µ2ρ0(Φ̂)† � ρ0(Φ̂)

− λρ0(Φ̂)† � ρ0(Φ̂) � ρ0(Φ̂)† � ρ0(Φ̂)
)
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+
∫

d4x

(
−

3∑
i,j=1

W ij
(
(¯̂L
(i)

L � ρL(Φ̂)) � ê(j)R

+ ¯̂e
(i)
R � (ρL(Φ̂)† � L̂(j)L )

)
−

3∑
i,j=1

Giju

(
( ¯̂Q
(i)

L � ρQ̄(̂̄Φ)) � û(j)R

+ ¯̂u
(i)
R � (ρQ̄(̂̄Φ)† � Q̂(j)L )

)
−

3∑
i,j=1

Gijd

(
( ¯̂Q
(i)

L � ρQ(Φ̂)) � d̂(j)R

+ ¯̂
d
(i)

R � (ρQ(Φ̂)† � Q̂(j)L )
))

, (32)

with Φ̄ = iτ2Φ∗. The matrices W ij , Giju and Gijd are the
Yukawa couplings. The gauge fields in the Seiberg–Witten
maps and covariant derivatives of the fermions terms are
summarized in Table 2. The representation used in the
trace of the kinetic terms for the gauge bosons is not
uniquely determined by gauge invariance of the action.
We pick the simplest choice of a sum of traces over the
U(1), SU(2) and SU(3) sectors, because we are interested
in a version of the standard model on non-commutative
space-time with minimal modifications2. In this spirit we
also take a simple choice of representation of Y of the form

Y =
1
2

(
1 0
0 −1

)
, (33)

in the definition of tr1. The traces tr2 and trace tr3 are
the usual SU(2), respectively SU(3) traces. The represen-
tations ρL, ρQ, ρQ̄ of the gauge potentials Vµ, V ′

µ that
appear in the hybrid Seiberg–Witten map of the Higgs
are those of the fermions on the left and right of the Higgs
in the Yukawa couplings; see (21),

ρL(Φ̂[φ, Vµ, V ′
ν ]) = Φ̂

[
φ,−1

2
g′Aµ + gBaµT

a
L , g

′Aν

]
, (34)

ρQ(Φ̂[φ, Vµ, V ′
ν ]) = Φ̂

[
φ,

1
6
g′Aµ + gBaµT

a
L

+gSGaµT
a
S ,

1
3
g′Aν − gSG

a
νT

a
S

]
, (35)

ρQ̄(Φ̂[φ, Vµ, V ′
ν ]) = Φ̂

[
φ,

1
6
g′Aµ + gBaµT

a
L

+gSGaµT
a
S ,−

2
3
g′Aν − gSG

a
νT

a
S

]
. (36)

The representation ρ0 of these gauge potentials in the ki-
netic term of the Higgs and in the Higgs potential is the
simplest possible one:

ρ0(Φ̂[φ, Vµ, V ′
ν ]) = Φ̂

[
φ,

1
2
g′Aµ + gBaµT

a
L , 0
]
. (37)

2 In Appendix C we present a different choice that is perhaps
more natural from the non-commutative point of view, with a
trace over the particles in the standard model

Table 2. The gauge fields in the Seiberg–Witten maps of the
fermions and in the covariant derivatives of the fermions in the
non-commutative standard model. (The symbols T a

L and T b
S

are here the Pauli and Gell-Mann matrices respectively)

Ψ (n) ρ(n)(Vν)

eR −g′Aν(x)

LL =
(

νL

eL

)
− 1

2g′Aν(x) + gBνa(x)T a
L

uR
2
3g′Aν(x) + gSGνb(x)T b

S

dR − 1
3g′Aν(x) + gSGνb(x)T b

S

QL =
(

uL

dL

)
1
6g′Aν(x) + gBνa(x)T a

L + gSGνb(x)T b
S

There are many possibilities to choose the representa-
tions in the kinetic terms of the gauge bosons.

Here, we decide to single out the choice with minimal
deviations from the standard model. In AppendixC we
discuss this in more detail and present another natural
choice. Eventually physical criteria should single out the
right choice. These criteria may include, e.g., renormal-
ization, CPT invariance, anomaly freedom, or any kind of
symmetry one might want to impose on the action.

4 The non-commutative electroweak sector

In this section we shall apply the Seiberg–Witten map
to the electroweak non-commutative standard model. The
gauge group of the model is SU(3)C × SU(2)L × U(1)Y .
The particle content is that of the standard model. The
matter fields and gauge fields content is summarized in
Table 1.

In the following, we shall work in the leading order
of the expansion in θ. In our convention, fields with a
hat are non-commutative whereas those without a hat are
ordinary fields. In particular, we use the following defi-
nitions: Aµ is the ordinary U(1)Y field, Bµ = BiµT

i
L are

the ordinary SU(2)L fields and Gµ = GiµT
i
S are the or-

dinary SU(3)C fields. For the lepton field L
(i)
L of the ith

generation which is in the fundamental representation of
SU(2)L and in the Y representation of U(1)Y , we have
the following expansion:

L̂
(i)
L [A, B] = L

(i)
L + L

(i)1
L [A, B] + O(θ2), (38)

with

L
(i)1
L [A, B] = −1

2
g′θµνAµ∂νLL − 1

2
gθµνBµ∂νLL

+
i
4
θµν (g′Aµ + gBµ) (g′Aν + gBν)LL. (39)

For a right-handed lepton field of the ith generation, one
has

ê
(i)
R [A] = e

(i)
R + e

(i)1
R [A] + O(θ2), (40)

with

e
(i)1
R [A] = −1

2
g′θµνAµ∂νe

(i)
R . (41)
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We have

Q̂
(i)
L [A, B,G] = Q

(i)
L +Q

(i)1
L [A, B,G] + O(θ2) (42)

for a left-handed quark doublet Q̂(i)L of the ith generation,
where

Q
(i)1
L [A, B,G] = −1

2
g′θµνAµ∂νQL

−1
2
gθµνBµ∂νQL − 1

2
gSθ

µνGµ∂νQL

+
i
4
θµν (g′Aµ + gBµ + gSGµ)

× (g′Aν + gBν + gSGν)QL. (43)

For a right-handed quark e.g. û(i)R , we have

û
(i)
R [A, G] = u

(i)
R + u

(i)1
R [A, G] + O(θ2) (44)

u
(i)1
R [A, G] = −1

2
g′θµνAµ∂νuR − 1

2
gSθ

µνGµ∂νuR

+
i
4
θµν (g′Aµ + gSGµ) (g′Aν + gSGν)uR.

The same expansion is obtained for a right-handed down-
type quark d

(i)
R .

The field strength F̂µν = ∂µV̂ν − ∂ν V̂µ − i[V̂µ ∗, V̂ν ] has
the following expansion:

F̂µν = Fµν + F 1µν + O(θ2), (45)

with

Fµν = g′fµν + gFLµν + gSF
S
µν , (46)

where fµν is the field strength corresponding to the group
U(1)Y , FLµν that to SU(2)L and FSµν that to SU(3)C . The
coupling constants of the gauge groups U(1)Y , SU(2)L
and SU(3)C are respectively denoted by g′, g and gS . The
leading order correction in θ is given by

F 1µν =
1
2
θαβ{Fµα, Fνβ} − 1

4
θαβ{Vα, (∂β +Dβ)Fµν}, (47)

with

DβFµν = ∂βFµν − i[Vβ , Fµν ]. (48)

The leading order expansion for the mathematical field
V is given by

V̂µ = Vµ + iΓµ + O(θ2), (49)

with

Γµ = i
1
4
θαβ
{
g′Aα + gBα + gSGα, g

′∂βAµ + g∂βBµ

+ gS∂βGµ + g′fβµ + gFLβµ + gSF
S
βµ

}
. (50)

The action of the non-commutative electroweak stan-
dard model reads

SNCSM = SMatter,leptons + SMatter,quarks

+ SGauge + SHiggs + SYukawa. (51)

We shall first consider the fermions (leptons and quarks).
The fermionic matter part is

SMatter,fermions (52)

=
∫

d4x

∑
f

Ψ̂fL � i /DΨ̂fL +
∑
f

Ψ̂fR � i /DΨ̂fR

 ,

where Ψ̂
(f)
L denotes the left-handed SU(2) doublets Ψ̂ (f)R

the right-handed SU(2) singlets and the index f runs over
the three flavors. We thus have:

Ψ
(1)
L =



(
νL

eL

)
(
urL

drL

)
(
uyL

dyL

)
(
ubL

dbL

)


, Ψ

(1)
R =



eR

urR

drR

uyR

dyR

ubR

dbR


(53)

for the first generation.
We thus have

SMatter,fermions =
∫

d4x

×
(∑

i

(
L̄
(i)
L + L̄

(i)1
L

)
� i
(
/DSM + /Γ

)
�
(
L
(i)
L + L

(i)1
L

)
+
∑
i

(
ē
(i)
R + ē

(i)1
R

)
i �
(
/DSM + /Γ

)
�
(
e
(i)
R + e

(i)1
R

))
+O(θ2)

=
∫

d4x
∑
i

L̄
(i)
L i /DSML(i)L

−1
4
θµν

∫
d4x

∑
i

L̄
(i)
L (g′fµν + gFLµν)i /D

SML
(i)
L

−1
2
θµν

∫
d4x

∑
i

L̄
(i)
L γα(g′fαµ + gFLαµ)iD

SM
ν L

(i)
L

+
∫

d4x
∑
i

ē
(i)
R i /DSMe(i)R

−1
4
θµν

∫
d4x

∑
i

ē
(i)
R g′fµν i /DSMe

(i)
R

−1
2
θµν

∫
d4x

∑
i

ē
(i)
R γαg′fαµiDSMν e

(i)
R + O(θ2) (54)

and
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SMatter,quarks =
∫

d4x

×
(∑

i

(
Q̄
(i)
L + Q̄

(i)1
L

)
� i
(
/DSM + /Γ

)
�
(
Q
(i)
L +Q

(i)1
L

)
+
∑
i

(
ū
(i)
R + ū

(i)1
R

)
i �
(
/DSM + /Γ

)
�
(
u
(i)
R + u

(i)1
R

))
+
∑
i

(
d̄
(i)
R + d̄

(i)1
R

)
i �
(
/DSM + /Γ

)
�
(
d
(i)
R + d

(i)1
R

)
+O(θ2)

=
∫

d4x
∑
i

Q̄
(i)
L i /DSMQ(i)L − 1

4
θµν

∫
d4x

×
∑
i

Q̄
(i)
L (g′fµν + gFLµν + gSF

S
µν)i /D

SMQ
(i)
L − 1

2
θµν

×
∫

d4x
∑
i

Q̄
(i)
L γα(g′fαµ + gFLαµ + gSF

S
αµ)iD

SM
ν Q

(i)
L

+
∫

d4x
∑
i

ū
(i)
R i /DSMu(i)R

−1
4
θµν

∫
d4x

∑
i

ū
(i)
R

(
g′fµν + gSF

S
µν

)
i /DSMu(i)R

−1
2
θµν

∫
d4x

∑
i

ū
(i)
R γα

(
g′fαµ + gSF

S
µν

)
iDSMν u

(i)
R

+
∫

d4x
∑
i

d̄
(i)
R i /DSMd(i)R

−1
4
θµν

∫
d4x

∑
i

d̄
(i)
R

(
g′fµν + gSF

S
µν

)
i /DSMd(i)R

−1
2
θµν

∫
d4x

∑
i

d̄
(i)
R γα

(
g′fαµ + gSF

S
µν

)
iDSMν d

(i)
R

+O(θ2). (55)

We recover the commutative standard model, but some
new interactions appear. The most striking feature are
point-like interactions between gluons, electroweak bosons
and quarks. For the gauge part of the action, one finds

Sgauge = −
∫

d4x
1

2g′ tr1F̂µν � F̂
µν

−
∫

d4x
1
2g

tr2F̂µν � F̂µν

−
∫

d4x
1

2gS
tr3F̂µν � F̂µν

= −1
4

∫
d4xfµνfµν − 1

2
Tr
∫

d4xFLµνF
Lµν

−gθµνTr
∫

d4xFLµρF
L
νσF

Lρσ

−1
2
Tr
∫

d4xFSµνF
Sµν

+
1
4
gSθ

µνTr
∫

d4xFSµνF
S
ρσF

Sρσ

−gSθµνTr
∫

d4xFSµρF
S
νσF

Sρσ + O(θ2). (56)

The coefficients of the triple vertex in the U(1) sector are
also different from plain NCQED with a single electron.
These coefficients depend on the representation we are
choosing for the Y in the kinetic terms. For the simple
choice that we have taken tr1Y 3 = 0 and this coefficient
is zero. Note that a term

+
1
4
gθµνTr

∫
d4xFLµνF

L
ρσF

Lρσ (57)

vanishes, the trace over the three Pauli matrices yields
2iεabc and the sum εabcF bLρσ F

cLρσ vanishes. Note that be-
cause the trace over τ3τ3τ3 vanishes, there is also no cubic
self-interaction term for the electromagnetic photon com-
ing from the SU(2) sector. Limits on non-commutative
QED found from triple photon self-interactions do there-
fore not apply for the minimal non-commutative standard
model.

As in the usual commutative standard model, the
Higgs mechanism can be applied to break the SU(2)L ×
U(1)Y gauge symmetry and thus to generate masses for
the electroweak gauge bosons. The non-commutative ac-
tion for a scalar field φ in the fundamental representation
of SU(2)L and with the hypercharge Y = 1/2 reads

SHiggs =
∫

d4x

(
ρ0

(
DµΦ̂

)†
� ρ0

(
DµΦ̂

)
−µ2ρ0(Φ̂)† � ρ0(Φ̂)

−λ(ρ0(Φ̂)† � ρ0(Φ̂)) � (ρ0(Φ̂)† � ρ0(Φ̂))

)
. (58)

In the leading order of the expansion in θ, we obtain

SHiggs =
∫

d4x((DSMµ φ)†DSMµφ− µ2φ†φ− λ(φ†φ)(φ†φ))

+
∫

d4x

(
(DSMµ φ)†

×
(
DSMµρ0(φ1) +

1
2
θαβ∂αV

µ∂βφ+ Γµφ
)

+
(
DSMµ ρ0(φ1) +

1
2
θαβ∂αVµ∂βφ+ Γµφ

)†
DSMµφ

+
1
4
µ2θµνφ†(g′fµν + gFLµν)φ

−λiθαβφ†φ(DSMα φ)†(DSMβ φ)

)
+ O(θ2), (59)

with

Γµ = −iV 1µ = i
1
4
θαβ
{
g′Aα + gBα, g

′∂βAµ + g∂βBµ

+ g′fβµ + gFLβµ

}
(60)

and
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ρ0(Φ̂) = φ+ ρ0(φ1) + O(θ2), (61)

where

ρ0(φ1) = −1
2
θαβ(g′Aα + gBα)∂βφ

+ i
1
4
θαβ(g′Aα + gBα)(g′Aβ + gBβ)φ. (62)

For µ2 < 0 the SU(2)L ×U(1)Y gauge symmetry is spon-
taneously broken to U(1)Q, which is the gauge group de-
scribing the electromagnetic interactions. We have gauge
freedom and take the so-called unitarity gauge

φ =
1√
2

(
0

η + v

)
, (63)

where v is the vacuum expectation value. Since the lead-
ing order of the expansion of the non-commutative action
corresponds to the standard model action, the Higgs mech-
anism generates masses for electroweak gauge bosons:

MW± =
g

2
v and MZ =

√
g2 + g′2

2
v, (64)

where the physical mass eigenstates W±, Z and A are as
usual defined by

W±
µ =

B1µ ∓ iB2µ√
2

,

Zµ =
−g′Aµ + gB3µ√

g2 + g′2

and

Aµ =
gAµ + g′B3µ√

g2 + g′2 . (65)

The Higgs mass is then given by m2η = −2µ2. Rewriting
the term Γµ in terms of the mass eigenstates, using

B3µ =
gZµ + g′Aµ√

g2 + g′2 and Aµ =
gAµ − g′Zµ√

g2 + g′2 , (66)

one finds that besides the usual standard model couplings,
numerous new couplings between the Higgs boson and the
electroweak gauge bosons appear.

We note that the non-commutative version of the stan-
dard model is also compatible with the alternative to the
Higgs mechanism proposed in [20].

The Yukawa couplings can then generate masses for
the fermions; one has

SYukawa =
∫

d4x

(
−

3∑
i,j=1

W ij
(
(¯̂L
(i)

L � ρL(Φ̂)) � ê(j)R

+¯̂e
(i)
R � (ρL(Φ̂)† � L̂(j)L )

)
−

3∑
i,j=1

Giju

(
( ¯̂Q
(i)

L � ρQ̄(̂̄Φ)) � û(j)R

+¯̂u
(i)
R � (ρQ̄(̂̄Φ)† � Q̂(j)L )

)
−

3∑
i,j=1

Gijd

(
( ¯̂Q
(i)

L � ρQ(Φ̂)) � d̂(j)R

+¯̂
d
(i)

R � (ρQ(Φ̂)† � Q̂(j)L )
))

, (67)

with Φ̂[Φ, V, V ′] as given in (34)–(36). The sum runs over
the different generations. The leading order expansion is

SYukawa = SSMYukawa

−
∫

d4x

(
3∑

i,j=1

W ij
(
(L̄iLφ)e

1j
R + (L̄iLρL(φ

1))ejR

+(L̄1iL φ)e
j
R + i

1
2
θαβ∂αL

i
L∂βφe

j
R + ēiR(φ

†L1jL )

+ēiR(ρL(φ
1)†LjL) + ē1iR (φ†LjL) + i

1
2
θαβ∂αe

i
R∂βφ

†LjL
)

−
3∑

i,j=1

Giju

(
(Q̄iLφ̄)u

1j
R + (Q̄iLρQ̄(φ̄1))ujR + (Q̄1iL φ̄)u

j
R

+i
1
2
θαβ∂αQ

i
L∂βφ̄u

j
R + ūiR(φ̄

†Q1jL ) + ūiR(ρQ̄(φ̄1)†QjL)

+ū1iR (φ̄†QjL) + i
1
2
θαβ∂αu

i
R∂βφ̄

†QjL
)

−
3∑

i,j=1

Gijd

(
(Q̄iLφ)d

1j
R + (Q̄iLρQ(φ1))djR + (Q̄1iL φ)d

j
R

+i
1
2
θαβ∂αQ

i
L∂βφd

j
R + d̄iR(φ

†Q1jL ) + d̄iR(ρQ(φ1)†QjL)

+d̄1iR (φ†QjL) + i
1
2
θαβ∂αd̄

i
R∂βφ

†QjL
))

+ O(θ2), (68)

where LiL stands for a left-handed leptonic doublet of the
ith generation, eiR for a leptonic singlet of the ith gen-
eration, QiL for a left-handed quark doublet of the ith
generation, uiR for a right-handed up-type quark singlet
of the ith and diR stands for a right-handed down-type
quark singlet of the ith generation. We used

ρ(Φ) = φ+ ρ(φ1) + O(θ2), (69)

where ρ stands for ρL, ρQ and ρQ̄, respectively. ρ(φ1) is
given by (21),

ρ(φ1) =
1
2
θµνρ(Vν)

(
∂µφ− i

2
ρ(Vµ)φ+

i
2
φρ(V ′

µ)
)

+
1
2
θµν

(
∂µφ− i

2
ρ(Vµ)φ+

i
2
φρ(V ′

µ)
)
ρ(V ′

ν). (70)

Once again we recover the standard model, but some new
interactions arise. The Yukawa coupling matrices can be
diagonalized using biunitary transformations. We thus ob-
tain a Cabibbo–Kobayashi–Maskawa matrix in the
charged currents, as in the standard model and as long
as right-handed neutrinos are absent, we do not predict
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lepton flavor changing currents. We give the Lagrangian
for the charged currents in AppendixA and that for the
neutral currents in AppendixB. Clearly, flavor physics is
much richer than in the standard model on a commutative
space.

5 Non-commutative quantum
chromodynamics

The method developed in [4] has been applied to non-
commutative quantum chromodynamics NCQCD already
[21]. But the authors of [21] have only considered the gauge
group SU(3)C instead of SU(3)C×SU(2)L×U(1)Y which
is the relevant gauge group to describe charged quarks.
Our results are thus different since the quarks are not
only in the fundamental representation of SU(3) but they
are also charged under SU(2)L × U(1)Y . This implies in
particular that parity is broken in NCQCD in the leading
order of the expansion in θ as the left-handed quarks are
charged under SU(2)L. One thus has to treat the right-
handed and left-handed quarks separately. The expansion
for the non-commutative quarks is thus of the form (42)
for a left-handed quark QL and of the form (44) for a
right-handed quark QR. The non-commutative action has
actually already been given previously in (54), although
it appears in a hidden fashion.

6 Discussion of the model

We have shown in Sect. 4 that the commutative electro-
weak standard model comes out as the zeroth order of the
expansion in θµν of the action of the non-commutative
standard model (NCSM). Although we have considered a
minimal non-commutative standard model, there is a basic
difference between the commutative and non-commutative
versions: in the non-commutative model, the different in-
teractions cannot be considered separately as the master
field Vµ, which is a superposition of the different gauge
fields, has to be introduced. In the leading order of the
expansion in θ, we find that the gauge bosons of the dif-
ferent gauge groups decouple. But because the quarks are
charged under SU(3)C as well as under SU(2)L × U(1)Y
some new vertices appear where the gauge bosons of dif-
ferent gauge groups are connected to the quarks. In the
minimal non-commutative standard model, a kind of mix-
ing or unification between all the interactions appears as
we have vertices where e.g. SU(3)C gauge bosons couple
to the U(1)Y gauge boson and to quarks. This type of
unification implies that parity is broken in NCQCD.

Up to the order considered we do not find couplings of
neutral particles like the Higgs boson to the electromag-
netic photon in the minimal version of the NCSM. We also
find new vertices in the pure gauge sector. In contradic-
tion with naive expectations the U(1)Y gauge boson does
not have a self-interacting vertex to the order considered,
but one finds vertices with five and six gauge bosons for
the gauge group SU(3)C and SU(2)L.

All the important features of the ordinary standard
model can be implemented in the model, in particular the
Higgs mechanism and the Yukawa sector. Biunitary trans-
formations can be applied to diagonalize the matrices of
Yukawa couplings.

Recently a model based on the gauge group U(3) ×
U(2) × U(1) was proposed [22]. This model involves a
clever extra Higgs mechanism to deal with the problems
of charge quantization and tensor products, but it con-
tains two gauge bosons which are not present in the usual
standard model. What we are doing is fundamentally dif-
ferent, as we are considering the standard model gauge
group SU(3) × SU(2) × U(1) directly. We thus have pro-
posed a minimal non-commutative extension of the stan-
dard model.

We have presented the first order expansion in θµν of
the non-commutative standard model, which only repre-
sents a low energy effective theory. The limits that can be
found in the literature on the combination Λθ are based
on the assumption that θµν is constant [23]; clearly the
limits are much weaker if the assumption is relaxed. As
in the case of chiral perturbation theory, the effects are
expected to be small for light particles. But they could
be sizable for heavy particles. In particular it is conceiv-
able that a phase transition occurs a high energy; Nature
could be non-commutative above that scale but commu-
tative under the scale of this phase transition.

Clearly the standard model on a non-commutative
space-time predicts a lot of new physics beyond the stan-
dard model. In particular as we have seen, we expect the
charged and neutral currents to be considerably affected
by non-commutative physics. The extraction of the CKM
matrix elements and in particular of the phase at the ori-
gin of CP -violation would be strongly influenced by that
type of new physics. One expects that the effects should
become larger with the mass of the decaying particle, es-
pecially if a phase transition exists. This might explain
why the standard model on a commutative space can ac-
commodate accurately CP -violation in the kaon system
although large non-commutative effects could show up in
e.g. the B-meson system.

High energy cosmic rays are also a place to probe non-
commutative physics. It has been proposed by Coleman
and Glashow [24] that a violation of Lorentz invariance
could explain this phenomenon.

There are indications that our model may be renor-
malizable to all orders in the coupling constants and in θ:
A study in the framework of non-commutative quantum
electrodynamics [8] has shown that the photon self-energy
is renormalizable to all order. But a proof of the renormal-
izability of our model is still to be furnished.

The problem of ultra-violet and infra-red mixing,
which plagues non-commutative quantum field theories
[25], should be reconsidered in the framework of the
Seiberg–Witten expansion used in our approach [26]. Note
that the ultra-violet and infra-red mixing is absent in the
case of Φ4 theory on a fuzzy sphere [27], where the quan-
tization has been performed via path integrals.
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7 Conclusions

We have considered the minimal non-commutative exten-
sion of the standard model (NCSM) and have calculated
the first order expansion of the model in θµν . This required
one to solve two problems: the U(1) charge quantization
and the application of the Seiberg–Witten method to a
tensor product of groups. The trace over the field strength
has to be defined properly. We obtain a low energy ef-
fective theory valid for small transferred momentum, in
that sense it is the analog of chiral perturbation theory
for quantum chromodynamics. The zeroth order expan-
sion is the commutative standard model. This model has
the same number of free coupling constants and fields as
the usual standard model.

We find that the most striking feature of the model
is a new type of unification as all interactions have to be
considered simultaneously. We have found that the Higgs
boson does not couple to the electroweak photon in the
minimal NCSM and that new effects in the charged and
neutral currents are expected. This will affect the extrac-
tion of the CKM matrix parameters and in particular of
the CP -violating phase. Neutral decays of heavy parti-
cle, e.g. of the b and t quarks might also reveal the non-
commutative nature of space-time. New vertices appear in
QCD. We find a point-like interaction between two quarks,
a gluon and a photon, thus opening new decay modes for
hadrons. Parity is violated in the leading order of the ex-
pansion in the non-commutative parameter θ.

The non-commutative standard model represents a
very natural extension of the standard model; it could
improve some of its problems, like naturalness and the
so-called hierarchy problem and it represents a natural at-
tempt to include the effects of quantum gravity in particle
physics.
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Appendix
A Charged currents

In this section we give the explicit formulas for the elec-
troweak charged currents in the leading order of the ex-
pansion in θ.

L = ( ū c̄ t̄ )L VCKMJ1

(
d
s
b

)
L

+( d̄ s̄ b̄ )L V
†
CKMJ2

(
u
c
t

)
L

, (71)

with

J1 =
1√
2
g /W+ +

(
1
2
θµνγα + θναγµ

)
×
((

−
√

2
4
Y g′g(cos θW∂µAν − cos θW∂νAµ

− sin θW∂µZν + sin θW∂νZµ)W+
α

)
+g

√
2

8

(
∂µW

+
ν − ∂νW

+
µ

−2ig
(
cos θWZµW+

ν + sin θWAµW+
ν

− cos θWW+
µ Zν − sin θWW+

µ Aν

))
×
(

− 2i∂α + 2Y g′ sin θWZα

−2Y g′ cos θWAα + g cos θWZα + g sin θWAα
)

−
√

2
8
g2
(
cos θW∂µZν − cos θW∂νZµ

+sin θW∂µAν − sin θW∂νAµ

−2ig(W+
µ W

−
ν −W+

ν W
−
µ )
)
W+
α

)
(72)

and

J2 =
1√
2
g /W− +

(
1
2
θµνγα + θναγµ

)
×
((

−
√

2
4
Y g′g(cos θW∂µAν − cos θW∂νAµ

− sin θW∂µZν + sin θW∂νZµ)W−
α

)
+g

√
2

8

(
∂µW

−
ν − ∂νW

−
µ

−2ig
(
cos θWW−

µ Zν + sin θWW−
µ Aν

− cos θWZµW−
ν − sin θWAµW+

ν

))
×
(

− 2i∂α + 2Y g′ sin θWZα − 2Y g′ cos θWAα

−g cos θWZα − g sin θWAα
)

−
√

2
8
g2
(
cos θW∂µZν − cos θW∂νZµ

+sin θW∂µAν − sin θW∂νAµ

−2ig(W+
µ W

−
ν −W+

ν W
−
µ )
)
W−
α

)
. (73)

Note that we have not included the interactions with the
gluons in the “electroweak” charged currents.
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B Neutral currents

In this appendix we give the explicit formula for the neu-
tral current in the leading order of the expansion in θ:

Lnc = LSMnc − i
1
2

∑
i

ū
(i)
L

(
1
2
θµνγα + θναγµ

)

×
((

cos θW∂µAν − cos θW∂νAµ

− sin θW∂µZν + sin θW∂νZµ
)

×
(
g′Y ∂α − iY 2g′2 cos θWAα + iY 2g′2 sin θWZα

−i
1
2
Y g′g cos θWZα − i

1
2
Y g′g sin θWAα

)
+

1
2

(
cos θW∂µZν − cos θW∂νZµ

+sin θW∂µAν − sin θW∂νAµ

−2ig(W+
µ W

−
ν −W+

ν W
−
µ )
)(

g∂α − iY g′g cos θWAα

+iY g′g cos θWZα − 1
2
ig2 cos θWZα − 1

2
ig2 sin θWAα

)
− i

2
g2
(
∂µW

+
ν − ∂νW

+
µ

−2ig
(
cos θWZµW+

ν + sin θWAµW+
ν −W+

µ cos θWZν

−W+
µ sin θWAν

))
W−
α

)
u
(i)
L

−i
1
2

∑
i

ū
(i)
R

(
1
2
θµνγα + θναγµ

)
×
((

cos θW∂µAν − cos θW∂νAµ

− sin θW∂µZν + sin θW∂νZµ
)

×
(
g′Y ∂α − iY 2g′2 cos θWAα + iY 2g′2 sin θWZα

))
u
(i)
R

−i
1
2

∑
i

d̄
(i)
L

(
1
2
θµνγα + θναγµ

)

×
((

cos θW∂µAν − cos θW∂νAµ

− sin θW∂µZν + sin θW∂νZµ
)

×
(
g′Y ∂α − iY 2g′2 cos θWAα + iY 2g′2 sin θWZα

−i
1
2
Y g′g cos θWZα − i

1
2
Y g′g sin θWAα

)
−1

2

(
cos θW∂µZν − cos θW∂νZµ

+sin θW∂µAν − sin θW∂νAµ

−2ig(W+
µ W

−
ν −W+

ν W
−
µ )
)(

g∂α − iY g′g cos θWAα

+iY g′g cos θWZα +
1
2
ig2 cos θWZα +

1
2
ig2 sin θWAα

)
− i

2
g2
(
∂µW

−
ν − ∂νW

−
µ

+2ig
(
cos θWZµW−

ν + sin θWAµW−
ν

−W−
µ cos θWZν −W−

µ sin θWAν
))

W+
α

)
d
(i)
L

−i
1
2

∑
i

d̄
(i)
R

(1
2
θµνγα + θναγµ

)

×
((

cos θW∂µAν − cos θW∂νAµ − sin θW∂µZν

+sin θW∂νZµ
)(

g′Y ∂α − iY 2g′2 cos θWAα

+iY 2g′2 sin θWZα
))

d
(i)
R . (74)

Note that we have not included the interactions with the
gluons in the “electroweak” neutral currents.

C Kinetic terms for the gauge bosons

Here we will discuss the kinetic terms for the gauge bosons
in more detail and will propose an alternative to the choice
presented in the main part of this paper.

Let us reconsider the discussion of charge in non-
commutative QED in Sect. 2.3. We found that without
knowledge of the existence of Seiberg–Witten maps we
would conclude that we need to introduce a separate phys-
ical gauge field â

(n)
µ for every charge q(n) in the model.

Equivalently we can also say that the mathematical field
Âµ depends nonlinearly on the charge operator Q, i.e., it is
enveloping algebra-valued. Then ÂµΨ̂

(n) ≡ eq(n)â
(n)
µ Ψ̂ (n)

with â
(n)
µ �= â

(m)
µ for q(n) �= q(m). The gauge field â

(n)
µ

appears in the covariant derivative

D̂µΨ̂
(n) = ∂µΨ̂

(n) − ieq(n)â(n)µ � Ψ̂ (n). (75)

It is natural to provide a kinetic term for each of these
gauge fields â(n)µ , i.e.,

SNCQED = − 1
4N

∫
d4x

N∑
n=1

f̂ (n)µν � f̂ (n)µν (+fermions),

(76)
where the field strength f̂

(n)
µν corresponding to the gauge

field â
(n)
µ is determined by

F̂µν Ψ̂
(n) ≡ eq(n)f̂ (n)µν Ψ̂

(n), (77)

with F̂µν = ∂µÂν − ∂νÂµ − i[Âµ �, Âν ]. The factor 1/N in
front of the action takes care of the correct commutative
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limit. We can also write the action in terms of F̂µν , the
charge operator Q and an appropriately normalized trace
Tr over the states Ψ̂ (n):

SNCQED = −1
2

∫
d4xTr

1
(eQ)2

F̂µν � F̂
µν (+fermions).

(78)
From a physical point of view there is no reason to use the
same coupling constant e for all gauge fields â(n)µ in (75).
We could as well introduce individual coupling constants
and correspondingly rescaled fields â′(n)

µ , f̂ ′(n)
µν . This leads

to an alternative action:

S′
NCQED = −1

2

∫
d4xTr

1
G2

F̂µν � F̂
µν (+fermions),

(79)
where G is an operator that is a function of the charge
operator Q and certain constants gn, such that

GΨ̂ (n) ∝ gnΨ̂
(n)

and

Tr
1
G2

F̂µν � F̂
µν =

1
N

N∑
n=1

e2

g2n
(q(n))2f̂ ′(n)

µν � f̂ ′(n)µν . (80)

The usual coupling constant e can be expressed in terms
of the gn by

Tr
1
G2

Q2 =
N∑
n=1

1
g2n

(q(n))2 =
1

2e2
. (81)

In the classical limit only this combination of the gn is
relevant.

We have chosen a set-up that can be directly gener-
alized to more general gauge theories including the stan-
dard model. The action for non-Abelian non-commutative
gauge bosons is

Sgauge = −1
2

∫
d4xTr

1
G2 F̂µν � F̂

µν , (82)

with the non-commutative field strength F̂µν , an appro-
priate trace Tr and an operator G. This operator must
commute with all generators (Y , T aL , T

b
S) of the gauge

group so that it does not spoil the trace property of Tr.
From what we have discussed above, it is natural to choose
a trace over all the particles (with different quantum num-
bers) in the model that have covariant derivatives acting
on them. In the standard model these are for each gener-
ation five multiplets of fermions and one Higgs multiplet;
see Table 1. The operator G is in general a function of
Y and the Casimirs of SU(2) and SU(3). However, due
to the special asignment of hypercharges in the standard
model it is possible to express G just in terms of Y and six
constants g1, . . . , g6 corresponding to the six multiplets. In
the classical limit only certain combinations of these six
constants, corresponding to the usual coupling constants

g′, g, gS , are relevant. The relation is given by the follow-
ing equations:

1
g21

+
1

2g22
+

4
3g23

+
1

3g24
+

1
6g25

+
1

2g26
=

1
2g′2 ,

1
g22

+
3
g25

+
1
g26

=
1
g2
,

1
g23

+
1
g24

+
2
g25

=
1
g2S

. (83)

These three equations define for fixed g′, g, gS a three-
dimensional simplex in the six-dimensional moduli space
spanned by 1/g21 , . . . , 1/g26 . The remaining three degrees
of freedom become relevant at order θ in the expansion of
the non-commutative action. Interesting are in particular
the following traces corresponding to triple gauge boson
vertices:

Tr
1

G2Y
3 = − 1

g21
− 1

4g22
+

8
9g23

− 1
9g24

+
1

36g25
+

1
4g26

,

Tr
1

G2Y T
a
LT

b
L =

1
2
δab
(

− 1
2g22

+
1

2g25
+

1
2g26

)
,

Tr
1

G2Y T
c
ST

d
S =

1
2
δcd
(

2
3g23

− 1
3g24

+
1

3g25

)
. (84)

We could choose, e.g., to maximize the traces over Y 3 and
Y T aLT

b
L. This gives 1/g21 = 1/(2g′2) − 4/(3g2S) − 1/(2g2),

1/g23 = 1/g2S , 1/g26 = 1/g2, 1/g22 = 1/g24 = 1/g25 = 0 and

Tr
1

G2Y
3 = − 1

2g′2 +
3

4g2
+

20
9g2S

,

Tr
1

G2Y T
a
LT

b
L =

1
4g2

δab,

Tr
1

G2Y T
c
ST

d
S =

2
6g2S

δcd.

In the scheme that we have presented in the main part
of this paper all three traces are zero. One consequence is
that while non-commutativity does not require a triple
photon vertex, such a vertex is nevertheless consistent
with non-commutativity. It is important to note that the
values of all three traces are bounded for any choice of
constants.
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